G - Physics – 01 – V
Patent
G - Physics
01
V
G01V 1/48 (2006.01) G01V 1/30 (2006.01) G01V 1/50 (2006.01) G01V 11/00 (2006.01)
Patent
CA 2144347
A discretized lithologic model of the subsurface is defined by a regular array of pixels. Each pixel corresponds to one of a finite number of possible lithoclasses such as sand, shale or dolomite. The lithoclasses are unknown except at a small number of sparsely distributed control pixels associated with borehole locations. Associated with each pixel there is a multivariate record of seismic attributes that may be statistically correlatable with the local lithology. A Monte Carlo method is used to simulate the lithoclass spatial distribution by combining the lithologic data at control pixels with the seismic-attribute data records. Using Indicator Kriging, a prior probability distribution of the lithoclasses is calculated for each pixel from the lithology values at neighboring pixels. The likelihood of each lithoclass is also calculated in each pixel from the corresponding conditional probability distribution of seismic attributes. A posterior lithoclass probability distribution is obtained at each pixel by multiplying the prior distribution and the likelihood function. The posterior distributions are sampled pixel-by-pixel to generate equally probable models of the subsurface lithology.
Un modèle lithologique discrétisé de la subsurface est défini par un réseau régulier de pixels. Chaque pixel correspond à une lithoclasse parmi un nombre fini de lithoclasses possibles, p. ex. sable, shale ou dolomie. Les lithoclasses sont inconnues sauf en un petit nombre de pixels de contrôle épars associés aux emplacements de sondage. € chaque pixel est associé un enregistrement multivarié d'attributs sismiques statistiquement corrélable avec la lithologie locale. Une méthode Monte Carlo permet de simuler la répartition spatiale des lithoclasses en combinant les données lithologiques des pixels de contrôle avec les enregistrements de données d'attributs sismiques. Au moyen de l'indicateur de krigeage, une distribution de probabilité a priori des lithoclasses est calculée pour chaque pixel à partir de la distribution de probabilité conditionnelle correspondante des attributs sismiques. Une distribution de probabilité de lithoclasses est obtenue à chaque pixel par multiplication de la distribution a priori et de la fonction de vraisemblance. Les distributions postérieures sont échantillonnées pixel par pixel afin de générer des modèles également probables de la lithologie de subsurface.
Doyen Philippe M.
Psaila David E.
Cassan Maclean
Landmark Graphics Corporation
LandOfFree
Bayesian sequential indicator simulation of lithology from... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Bayesian sequential indicator simulation of lithology from..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Bayesian sequential indicator simulation of lithology from... will most certainly appreciate the feedback.
Profile ID: LFCA-PAI-O-1447018